Home  |  Services  |  Workflow  |  Portfolio  |  Testimonial  |  Download  |  About Us  |  Contact Us  |  FAQ  |  Glossary 

Home>Glossary

289. Reducing distortion in a spray formed rapid tooling

Reducing distortion in a spray formed rapid tooling includes the steps of making a model of a desired tool and constructing a ceramic pattern as the inverse of the model. The method also includes the steps of building a thermal model of the desired tool from a solid model of the ceramic pattern and applying thermal boundary conditions to the thermal model based on known conditions.

The method also includes the steps of running the thermal model to produce a temperature distribution of the desired tool and determining any temperature deviations in the temperature distribution above a predetermined value. The method further includes thermally spraying a metal material against the ceramic pattern to form the desired tool if there are no temperature deviations in the temperature distribution above the predetermined value.

It is known to make a rapid prototyping. In spray forming, a master model of a desired tool is produced using a free form fabrication technique. This master model is then used to create a ceramic pattern, which is the reverse of the desired tool to be produced. The resulting ceramic pattern is the receptor onto which metal is sprayed to form a deposit in the shape of the desired tool. Typically, the spray forming process uses a wire-arc spraying. In wire-arc spraying, electric current is carried by two electrically conductive, consumable wires with an electric arc forming between the wire tips.

A high-velocity gas jet blowing from behind the consumable wires strips away the molten metal, which continuously forms as the wires are melted by the electric arc. The high-velocity gas jet breaks up or atomizes the molten metal into finer particles in order to create a fine distribution of molten metal droplets. The atomizing gas then accelerates the droplets away from the wire tips to the ceramic pattern where the molten metal droplets impact the ceramic pattern to incrementally form a deposit in the shape of the desired tool. The completed desired tool is then mounted and used to produce parts in conventional stamping, die casting, or molding process.

During the spray forming process, the spray formed rapid tooling may have a varied temperature distribution across the ceramic pattern and each layer thereof. This can result in distortion of the spray formed rapid tooling as shrinkage of the sprayed metal occurs. Recently, there has been a need to create the spray formed rapid tooling geometrically accurate. To accomplish this, a number of trial spray runs are conducted to determine ideal spray parameters to obtain a uniform temperature distribution.

Here are some samples we have done before, please kindly take a look:

Product design

Product design
samples
Rapid prototyping

rapid prototyping
samples

Plastic molds
Custom molds
samples


Electronic product
design samples



rapid prototype
samples



Plastic molds
samples
Home - Glossary - Glossary289
We are constantly looking for new products in order to grow our business and Invention Home has enabled us to streamline that process much more quickly.
                                                    Marsha Dunmyre
                                                          CA, U.S.A
BROWSE MORE
Cool Prototyping provides "one-stop" product design service: rapid prototyping, plastic molds, custom molds, production tooling and plastic molding.
Cool Prototyping Copyright 2008-2009 © All Rights Reserved. Rapid Prototyping